
Appendix
Object Model and Namespaces

More advanced than most systems, where you must create Tags or Variables for all internal properties 
and custom logic for your projects, FactoryStudio allows your application(s) to directly access all the 
business objects that were created in your project. This means that user-created temporary tags are not 
required to manage the status of PLC network nodes, the total number of alarms in a group, or the 
number of rows in a dataset. You can now access runtime objects, business objects (representing a 
network node), an alarm group or dataset, and display required information or take action directly through 
their built-in properties.

FactoryStudio has an underlying .NET object model, 100% managed code, specifically targeting the 
development of Real-Time data management applications. The hierarchical object model includes the 
following top-level objects, which correspond to the main modules in FactoryStudio:

Tags Dataset

Historian Script

Security Server

Alarm Client

Device Info

That top-level hierarchy is implemented as .NET Namespaces. Each Namespace has the .NET classes 
and objects created when building a project configuration. Besides having the configuration settings, 
those objects also have runtime properties, methods and status.

For instance that Tag namespace has all the tags in the application and each tag has built-in properties 
field properties such as Quality, TimeStamp, Min, Max, Units and many others. 

Examples

Tag.tagname1.bit0, tag.tagname2.timestamp
The same concept of the tag fields applies to all namespaces, for instance:
Alarm.TotalCount:, Alarm.Group.Warning.Disable:

When building the project configuration, filling input fields or creating scripts, the system always has 
the  Intellisense auto-completion, which guides you to the existing properties that are allowed to use 
according to what you are editing. This feature allows you to easily "drill down" to a specific property. 

When accessing a project object in the .NET Script Editor, it is necessary to prefix the namespace with 
"@" symbol in order to avoid conflict with the .NET local variables names.

Examples

In Script-Tasks and CodeBehind, use:
@Tag.Analog1
@Device.Node.Node1.Status

The @ symbol is not necessary on Grids and Dialogs. Some input fields may require object of only one 
type, such as Tag or Display, the Intellisense will automatically guide you to the allowed objects. 

For some users that don't have previous experience in .NET or similar object-oriented systems, those 
concepts are abstract at the beginning, but when learning the engineering configuration tools and the 
FactoryStudio modules, the power of those concepts will be clear. What is completely sure is that when 
getting used with object models and Intellisense, there is a huge productivity increment and you no 
longer accept working with systems lacking those features.

On this section we will explain more about the Namespaces available on Factory Studio.

On this page

Object Model and 
Namespaces


	Appendix

